Idiosyncratic learning performance in flies

Author:

Smith Matthew A.-Y.1,Honegger Kyle S.2,Turner Glenn3,de Bivort Benjamin1ORCID

Affiliation:

1. Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA

2. Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA

3. Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA

Abstract

Individuals vary in their innate behaviours, even when they have the same genome and have been reared in the same environment. The extent of individuality in plastic behaviours, like learning, is less well characterized. Also unknown is the extent to which intragenotypic differences in learning generalize: if an individual performs well in one assay, will it perform well in other assays? We investigated this using the fruit fly Drosophila melanogaster , an organism long-used to study the mechanistic basis of learning and memory. We found that isogenic flies, reared in identical laboratory conditions, and subject to classical conditioning that associated odorants with electric shock, exhibit clear individuality in their learning responses. Flies that performed well when an odour was paired with shock tended to perform well when the odour was paired with bitter taste or when other odours were paired with shock. Thus, individuality in learning performance appears to be prominent in isogenic animals reared identically, and individual differences in learning performance generalize across some aversive sensory modalities. Establishing these results in flies opens up the possibility of studying the genetic and neural circuit basis of individual differences in learning in a highly suitable model organism.

Funder

Esther A. and Joseph Klingenstein Fund

Richard and Susan Smith Family Foundation

Alfred P. Sloan Foundation

Howard Hughes Medical Institute

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3