Neuron-level Prediction and Noise can Implement Flexible Reward-Seeking Behavior

Author:

Li ChenguangORCID,Brenner JonahORCID,Boesky AdamORCID,Ramanathan SharadORCID,Kreiman GabrielORCID

Abstract

AbstractWe show that neural networks can implement reward-seeking behavior using only local predictive updates and internal noise. These networks are capable of autonomous interaction with an environment and can switch between explore and exploit behavior, which we show is governed by attractor dynamics. Networks can adapt to changes in their architectures, environments, or motor interfaces without any external control signals. When networks have a choice between different tasks, they can form preferences that depend on patterns of noise and initialization, and we show that these preferences can be biased by network architectures or by changing learning rates. Our algorithm presents a flexible, biologically plausible way of interacting with environments without requiring an explicit environmental reward function, allowing for behavior that is both highly adaptable and autonomous. Code is available athttps://github.com/ccli3896/PaN.

Publisher

Cold Spring Harbor Laboratory

Reference46 articles.

1. David Abel , André Barreto , Benjamin Van Roy , Doina Precup , Hado P van Hasselt , and Satinder Singh . A definition of continual reinforcement learning. Advances in Neural Information Processing Systems, 36, 2024.

2. Jimmy Ba , Geoffrey E Hinton , Volodymyr Mnih , Joel Z Leibo , and Catalin Ionescu . Using fast weights to attend to the recent past. Advances in neural information processing systems, 29, 2016.

3. Gflownet foundations;Journal of Machine Learning Research,2023

4. A technical critique of some parts of the free energy principle;Entropy,2021

5. Gerard Briscoe and Paolo Dini . Towards autopoietic computing. In Digital Ecosystems: Third International Conference, OPAALS 2010, Aracuju, Sergipe, Brazil, March 22-23, 2010, Revised Selected Papers 3, pages 199–212. Springer, 2010.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3