Immigration allows population persistence and maintains genetic diversity despite an attempted experimental extinction

Author:

Park Keon Young1ORCID,Lucas Mel1,Chaulk Andrew12,Matter Stephen F.3,Roland Jens4,Keyghobadi Nusha1

Affiliation:

1. Department of Biology, Western University , London, Ontario N6A 5B7, Canada

2. Department of Biology, Memorial University of Newfoundland , St John’s, Newfoundland A1C 5S7, Canada

3. Department of Biological Sciences, University of Cincinnati , Cincinnati, OH 45221, USA

4. Department of Biological Sciences, University of Alberta , Edmonton, Alberta T6G 2E9, Canada

Abstract

Widespread fragmentation and degradation of habitats make organisms increasingly vulnerable to declines in population size. Immigration is a key process potentially affecting the rescue and persistence of populations in the face of such pressures. Field research addressing severe demographic declines in the context of immigration among interconnected local populations is limited owing to difficulties in detecting such demographic events and the need for long-term monitoring of populations. In a 17-subpopulation metapopulation of the butterfly, Parnassius smintheus , all adults observed in two adjacent patches were removed over eight consecutive generations. Despite this severe and long-term reduction in survival and reproduction, the targeted populations did not go extinct. Here, we use genetic data to assess the role of immigration versus in situ reproduction in allowing the persistence of these populations. We genotyped 471 samples collected from the targeted populations throughout the removal experiment at 152 single nucleotide polymorphisms. We found no reduction in the genetic diversity of the targeted populations over time, but a decrease in the number of loci in Hardy–Weinberg equilibrium, consistent with a high level of immigration from multiple surrounding populations. Our results highlight the role of connectivity and movement in making metapopulations resilient to even severe and protracted localized population reductions.

Funder

Alberta Conservation Association

Natural Sciences and Engineering Research Council of Canada

Directorate for Biological Sciences

Publisher

The Royal Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3