Relativistic AB Initio calculations of interaction energies: formulation and application to ionic solids

Author:

Abstract

The theory and computational techniques used in a computer program capable of performing fully relativistic ab initio electronic structure calculations for pairs of interacting atomic species are presented. If the species are ions in a crystal, a description of an ionic solid is obtained. If the two species are otherwise free, the program yields a wavefunction for a diatomic molecule. The molecular wavefunction is an antisymmetrized product of core and valence parts. The core is a Hartree product of the Dirac—Fock atomic orbitals of the free atoms. The largest contribution to the energy arises from the inner-core orbitals, each having negligible overlap with all other orbitals. The purely atomic inner-core energy does not contribute to the binding energy of the molecule, thus obviating the need to calculate the largest part of the molecular energy. The outer core consists of those remaining closed subshells of the isolated atoms that are not significantly affected on molecule formation. All the remaining orbitals, including at least the valence Dirac—Fock atomic orbitals of the free atoms plus further atomic functions needed to describe charge density changes upon molecule formation, are used to construct the valence wavefunction. This can be constructed to take account of correlation between the valence electrons. All atomic functions have central field form with the radial parts defined numerically. This method of constructing the molecular wavefunction avoids the need for large basis sets, ensures that the Dirac small components bear the correct relation to the large components and avoids basis set superposition errors. This program is used to initiate a non-empirical study of the properties of ionic solids. The results show that these properties cannot be reliably predicted by using free ion wavefunctions and that the Watson shell model for describing the non-negligible differences between free and in-crystal ion wavefunctions is not satisfactory. The results demonstrate the importance of inter-ionic dispersive attractions but show that it is not satisfactory to neglect the part quenching of the standard long-range form of these attractions arising from overlap of the ion wavefunctions.

Publisher

The Royal Society

Subject

General Engineering

Reference6 articles.

1. The evaluation of integrals occurring in the theory of molecular structure. Parts I & II

2. Brink D. M. & Satchler G. R. 1968 Angular momentum. Oxford University Press.

3. Briscoe G. V. & Squire C. F. 1957

4. Brown G. E. & Ravenhall D. G. 1951 Pros.

5. Caola M . J . 1978 J. Phys.A l l L23.

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3