Unified construction of relativistic Hamiltonians

Author:

Liu Wenjian1ORCID

Affiliation:

1. Qingdao Institute for Theoretical and Computational Sciences, School of Chemistry and Chemical Engineering, Shandong University , Qingdao, Shandong 266237, People’s Republic of China

Abstract

It is shown that the four-component (4C), quasi-four-component (Q4C), and exact two-component (X2C) relativistic Hartree–Fock equations can be implemented in a unified manner by making use of the atomic nature of the small components of molecular 4-spinors. A model density matrix approximation can first be invoked for the small-component charge/current density functions, which gives rise to a static, pre-molecular mean field to be combined with the one-electron term. As a result, only the nonrelativistic-like two-electron term of the 4C/Q4C/X2C Fock matrix needs to be updated during the iterations. A “one-center small-component” approximation can then be invoked in the evaluation of relativistic integrals, that is, all atom-centered small-component basis functions are regarded as extremely localized near the position of the atom to which they belong such that they have vanishing overlaps with all small- or large-component functions centered at other nuclei. Under these approximations, the 4C, Q4C, and X2C mean-field and many-electron Hamiltonians share precisely the same structure and accuracy. Beyond these is the effective quantum electrodynamics Hamiltonian that can be constructed in the same way. Such approximations lead to errors that are orders of magnitude smaller than other sources of errors (e.g., truncation errors in the one- and many-particle bases as well as uncertainties of experimental measurements) and are, hence, safe to use for whatever purposes. The quaternion forms of the 4C, Q4C, and X2C equations are also presented in the most general way, based on which the corresponding Kramers-restricted open-shell variants are formulated for “high-spin” open-shell systems.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Reference156 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3