The moments of the distribution for normal samples of measures of departure from normality

Author:

Abstract

If x 1 ... x n are the values of a variate observed in a sample of n , from any population, we may evaluate a series of statistics ( K ) such that the mean value of k p will be the p th cumulative moment function of the sampled population; the first three of these are defined by the equations; k 1 = 1/ n S ( x ), k 2 = 1/ n -1 S ( x - k 1 ) 2 , k 3 = n /( n -1) ( n -2) S ( x - k 1 ) 3 ; then it has been shown (fisher, 1929) that the cumulative moment functions of the simultaneous distribution, in samples, of k 1 , k 2 , k 3 ,..., may be obtained by the direct application of a very simple combination procedure. The simplest measure of departure from normality will the be γ = k 3 k 2 -3/2 , a quantity which is evidently independent of the units of measurements, and in samples from a symmetrical distribution will have a distribution symmetrical about the value zero. In testing the evidence provided by a sample, of departure from normality, the distribution of this quantity in normal samples is required.

Publisher

The Royal Society

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3