A new probability density function for the surface elevation in irregular seas

Author:

Fuhrman David R.ORCID,Klahn MathiasORCID,Zhai YanyanORCID

Abstract

To date, the predominant means for computing the probability density function (p.d.f.) for the free surface elevation of a nonlinear, irregular water wave field, free of assumptions involving narrow-bandedness and small directionality, is the approximate Gram–Charlier series solution of Longuet-Higgins (J. Fluid Mech., vol. 17, 1963, pp. 459–480, hereafter LH63). In this paper we re-visit the derivation of this p.d.f. to second order in the wave steepness, utilizing both moment and cumulant generating functions. We show that LH63's approximate solution based on the cumulant generating function, in fact, matches that derived from the moment generating function. Moreover, through a change of variables coupled with complex analysis, it is shown that the approximation employed by LH63 is unnecessary, and the second-order p.d.f. stemming from the cumulant generating function can be represented exactly in terms of the Airy function. The new second-order p.d.f. predicts increased probability of extreme positive surface elevations typical of e.g. rogue waves, relative to both second- and third-order solutions of LH63. This heavy positive tail is inherent, and is explained through comparison of the asymptotic limits of the p.d.f.s for large surface elevations. A semi-theoretical method is also proposed for remedying non-physical spurious oscillations that arise in the negative tail, based on the envelope of the Airy function with negative arguments. This modified negative tail is valid for irregular wave fields having skewness less than or equal to 0.2. The new p.d.f.s are compared against those based on data sets generated from second-order irregular wave theory as well as a fully nonlinear, spectrally accurate numerical wave model. Good accuracy is collectively demonstrated for directionally spread irregular seas in both finite and infinite water depths for a range of directional spreading.

Funder

Danmarks Frie Forskningsfond

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3