Discrimination of object information by bat echolocation deciphered from acoustic simulations

Author:

Teshima Yu12ORCID,Mogi Mayuko3,Nishida Hare3,Tsuchiya Takao4,Kobayasi Kohta I.3,Hiryu Shizuko3ORCID

Affiliation:

1. Acoustic Navigation Research Center, Doshisha University, Kyoto 610-0321, Japan

2. Project Team for System Development of Marine Environmental Impact Assessment / SIP Ocean Program, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka 237-0061, Japan

3. Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0321, Japan

4. Faculty of Sciences and Engineering, Doshisha University, Kyoto 610-0321, Japan

Abstract

High-precision visual sensing has been achieved by combining cameras with deep learning. However, an unresolved challenge involves identifying information that remains elusive for optical sensors, such as occlusion spots hidden behind objects. Compared to light, sound waves have longer wavelengths and can, therefore, collect information on occlusion spots. In this study, we investigated whether bats could perform advanced sound sensing using echolocation to acquire a target's occlusion information. We conducted a two-alternative forced choice test on Pipistrellus abramus with five different targets, including targets with high visual similarity from the front, but different backend geometries, i.e. occlusion spots or textures. Subsequently, the echo impulse responses produced by these targets, which were difficult to obtain with real measurements, were computed using three-dimensional acoustic simulations to provide a detailed analysis consisting of the acoustic cues that the bats obtained through echolocation. Our findings demonstrated that bats could effectively discern differences in target occlusion spot structure and texture through echolocation. Furthermore, the discrimination performance was related to the differences in the logarithmic spectral distortion of the occlusion-related components in the simulated echo impulse responses. This suggested that the bats obtained occlusion information through echolocation, highlighting the advantages of utilizing broadband ultrasound for sensing.

Funder

JSPS

Japan Society for the Promotion of Science

Publisher

The Royal Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3