Modelling and predicting online vaccination views using bow-tie decomposition

Author:

Han Yueting12ORCID,Bazzi Marya23,Turrini Paolo4

Affiliation:

1. MathSys CDT, University of Warwick, Coventry, UK

2. Mathematics Institute, University of Warwick, Coventry, UK

3. The Alan Turing Institute, London, UK

4. Department of Computer Science, University of Warwick, Coventry, UK

Abstract

Social media has become increasingly important in shaping public vaccination views, especially since the COVID-19 outbreak. This paper uses bow-tie structure to analyse a temporal dataset of directed online social networks that represent the information exchange among anti-vaccination, pro-vaccination and neutral Facebook pages. Bow-tie structure decomposes a network into seven components, with two components, strongly connected component (SCC) and out-periphery component (OUT), emphasized in this paper: SCC is the largest strongly connected component, acting as an ‘information magnifier’, and OUT contains all nodes with a directed path from a node in SCC, acting as an ‘information creator’. We consistently observe statistically significant bow-tie structures with different dominant components for each vaccination group over time. In particular, the anti-vaccination group has a large OUT, and the pro-vaccination group has a large SCC. We further investigate changes in opinions over time, as measured by fan count variations, using agent-based simulations and machine learning models. Across both methods, accounting for bow-tie decomposition better reflects information flow differences among vaccination groups and improves our opinion dynamics prediction results. The modelling frameworks we consider can be applied to any multi-stance temporal network and could form a basis for exploring opinion dynamics using bow-tie structure in a wide range of applications.

Funder

Engineering and Physical Sciences Research Council

Publisher

The Royal Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3