The solution of heat-transfer problems by the Wiener—Hopf technique II. Trailing edge of a hot film

Author:

Abstract

An incompressible fluid of constant thermal diffusivity k , flows with velocity u = Sy in the x -direction, where S is a scaling factor for the velocity gradient at the wall y = 0. The region — L ≤ x ≤ 0 is occupied by a heated film of temperature T 1 , the rest of the wall being insulated. Far from the film the fluid temperature is T 0 < T 1 . The finite heated film is approximated by a semi-infinite half-plane x < 0 by assuming that the boundary-layer solution is valid somewhere on the finite region upstream of the trailing edge. Exact solutions in terms of Fourier inverse integrals are obtained by using the Wiener-Hopf technique for the dimensionless temperature distribution on the half-plane x > 0 and the heat transfer from the heated film. An asymptotic expansion is made in inverse powers of x and the coefficient of the leading term is used to calculate the exact value of the total heat-transfer as a function of the length L . It is shown that the boundary layer solution differs from the exact solution by a term of order L -1/3 for large L . An expansion in powers of x for the heat transfer upstream of the trailing edge is also found. Application of the theory, together with that of Springer & Pedley (1973), to hot films used in experiments are discussed for the range of values of L(S/K) ½ , up to 20.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference7 articles.

1. Abramowitz M. & Stegun I. A. 1968 Handbook of mathematical functions. Dover.

2. Bateman H. 1954 Tables of integral transforms (ed. A. Erdelyi) vol. 1 4.3.9. New York: McGraw-Hill.

3. Heat Transfer From a Small Isothermal Spanwise Strip on an Insulated Boundary

4. On the forced heat transfer from a hot film embedded in the wall in two-dimensional unsteady flow

5. Development and evaluation of a hot-film velocity probe for cardiovascular studies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3