Fluid forces on a body in shear-flow; experimental use of ‘stationary flow'

Author:

Abstract

The lift and drag forces have been measured on a sphere and a transverse cylinder immersed in an open liquid shear-flow and situated close to the lower, frictional, boundary (the bed). Two conditions were investigated: ( a ) that of zero drag, when the body was drifting with the flow, and ( b ) that when it was held against the flow. In condition ( a ) the body could be either allowed to rotate about a transverse axis subject to unavoidable pivot friction, or prevented from rotating. Marked difference was found in the magnitude of the lift force according to the applied resistance to rotation. The lift force was a maximum when rotation was prevented and small or undetectable when free rotation was allowed. In the conditions ( a ) and ( b ) the lift force decreased with increasing clearance between body and boundary, to zero when the clearance exceeded approximately one body diameter. In condition ( b ) lift, i. e. normally repulsive, forces of approximately equal magnitudes to those below were exerted as the body approached the upper free liquid surface. In the drifting condition ( a ) the considerable difficulties of observation and force measurement when a body is moving with the flow were removed by the use of a backward-moving bed boundary. By thus superimposing a reverse velocity on the whole system, the mean fluid velocity at any desired distance from the boundary can be made zero relative to the observer without appreciably affecting the internal dynamics of the flow. This device also permitted the repetition of the measurements made by using liquids of greater viscosity than water available in limited quantities. The results are interpreted with an explanation in mind of certain aspects of the motions of unsuspended solids in saltation over a stream bed.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3