Inverse and forward dynamics: models of multi–body systems

Author:

Otten E.1

Affiliation:

1. Institute of Movement Sciences, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands ()

Abstract

Connected multi–body systems exhibit notoriously complex behaviour when driven by external and internal forces and torques. The problem of reconstructing the internal forces and/or torques from the movements and known external forces is called the ‘inverse dynamics problem’, whereas calculating motion from known internal forces and/or torques and resulting reaction forces is called the ‘forward dynamics problem’. When stepping forward to cross the street, people use muscle forces that generate angular accelerations of their body segments and, by virtue of reaction forces from the street, a forward acceleration of the centre of mass of their body. Inverse dynamics calculations applied to a set of motion data from such an event can teach us how temporal patterns of joint torques were responsible for the observed motion. In forward dynamics calculations we may attempt to create motion from such temporal patterns, which is extremely difficult, because of the complex mechanical linkage along the chains forming the multi–body system. To understand, predict and sometimes control multi–body systems, we may want to have mathematical expressions for them. The Newton–Euler, Lagrangian and Featherstone approaches have their advantages and disadvantages. The simulation of collisions and the inclusion of muscle forces or other internal forces are discussed. Also, the possibility to perform a mixed inverse and forward dynamics calculation are dealt with. The use and limitations of these approaches form the conclusion.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Reference11 articles.

1. Featherstone R. 1987 Robot dynamics algorithms. Dordrecht The Netherlands: Kluwer.

2. Feynmann R. F. Leighton R. B. & Sands M. L. 1964 The Feynmann lectures on physics. Reading MA: Addison-Wesley.

3. On a new species of imaginary quantities connected with a theory of quaternions;Hamilton W. R.;Proc. R. Irish Acad.,1844

4. Huston R. L. 1990 Multibody dynamics. Boston MA: Butterworth-Heinemann.

5. On the Derivation of Equations of Motion

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3