Affiliation:
1. Department of Biomedical Engineering, ENS 610, University of Texas at Austin, Austin, TX 78712, USA ()
Abstract
While simple models can be helpful in identifying basic features of muscle function, more complex models are needed to discern the functional roles of specific muscles in movement. In this paper, two very different models of walking, one simple and one complex, are used to study how muscle forces, gravitational forces and centrifugal forces (i.e. forces arising from motion of the joints) combine to produce the pattern of force exerted on the ground. Both the simple model and the complex one predict that muscles contribute significantly to the ground force pattern generated in walking; indeed, both models show that muscle action is responsible for the appearance of the two peaks in the vertical force. The simple model, an inverted double pendulum, suggests further that the first and second peaks are due to net extensor muscle moments exerted about the knee and ankle, respectively. Analyses based on a much more complex, muscle–actuated simulation of walking are in general agreement with these results; however, the more detailed model also reveals that both the hip extensor and hip abductor muscles contribute significantly to vertical motion of the centre of mass, and therefore to the appearance of the first peak in the vertical ground force, in early single–leg stance. This discrepancy in the model predictions is most probably explained by the difference in model complexity. First, movements of the upper body in the sagittal plane are not represented properly in the double–pendulum model, which may explain the anomalous result obtained for the contribution of a hip–extensor torque to the vertical ground force. Second, the double–pendulum model incorporates only three of the six major elements of walking, whereas the complex model is fully 3D and incorporates all six gait determinants. In particular, pelvic list occurs primarily in the frontal plane, so there is the potential for this mechanism to contribute significantly to the vertical ground force, especially during early single–leg stance when the hip abductors are activated with considerable force.
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献