Dynamics of actomyosin interactions in relation to the cross-bridge cycle

Author:

Holmes K. C.,Trentham D. R.,Simmons R.,Zeng Wei1,Conibear Paul B.1,Dickens Jane L.1,Cowie Ruth A.1,Wakelin Stuart1,Málnási–Csizmadia András2,Bagshaw Clive R.1

Affiliation:

1. Department of Biochemistry, University of Leicester, Leicester LE1 7RH, UK

2. Department of Biochemistry, Eötvös University, H-1117 Budapest, Hungary

Abstract

Transient kinetic measurements of the actomyosin ATPase provided the basis of the Lymn–Taylor model for the cross–bridge cycle, which underpins current models of contraction. Following the determination of the structure of the myosin motor domain, it has been possible to introduce probes at defined sites and resolve the steps in more detail. Probes have been introduced in the Dicytostelium myosin II motor domain via three routes: (i) single tryptophan residues at strategic locations throughout the motor domain; (ii) green fluorescent protein fusions at the N and C termini; and (iii) labelled cysteine residues engineered across the actin–binding cleft. These studies are interpreted with reference to motor domain crystal structures and suggest that the tryptophan (W501) in the relay loop senses the lever arm position, which is controlled by the switch 2 open–to–closed transition at the active site. Actin has little effect on this process per se . A mechanism of product release is proposed in which actin has an indirect effect on the switch 2 and lever arm position to achieve mechanochemical coupling. Switch 1 closing appears to be a key step in the nucleotide–induced actin dissociation, while its opening is required for the subsequent activation of product release. This process has been probed with F239W and F242W substitutions in the switch 1 loop. The E706K mutation in skeletal myosin IIa is associated with a human myopathy. To simulate this disease we investigated the homologous mutation, E683K, in the Dictyostelium myosin motor domain.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3