Affiliation:
1. Laboratory of Apiculture and Social Insects, Department of Biological and Environmental Science, University of Sussex, Falmer, Brighton BN1 9QG, UK
2. Department of Biological and Environmental Sciences, University of Helsinki, PO Box 65, 00014 Helsinki, Finland
Abstract
In eusocial organisms, some individuals specialize in reproduction and others in altruistic helping. The evolution of eusociality is, therefore, also the evolution of remarkable inequality. For example, a colony of honeybees (
Apis mellifera
) may contain 50 000 females all of whom can lay eggs. But 100 per cent of the females and 99.9 per cent of the males are offspring of the queen. How did such extremes evolve? Phylogenetic analyses show that high relatedness was almost certainly necessary for the origin of eusociality. However, even the highest family levels of kinship are insufficient to cause the extreme inequality seen in e.g. honeybees via ‘voluntary altruism’. ‘Enforced altruism’ is needed, i.e. social pressures that deter individuals from attempting to reproduce. Coercion acts at two stages in an individual's life cycle. Queens are typically larger so larvae can be coerced into developing into workers by being given less food. Workers are coerced into working by ‘policing’, in which workers or the queen eat worker-laid eggs or aggress fertile workers. In some cases, individuals rebel, such as when stingless bee larvae develop into dwarf queens. The incentive to rebel is strong as an individual is the most closely related to its own offspring. However, because individuals gain inclusive fitness by rearing relatives, there is also a strong incentive to ‘acquiesce’ to social coercion. In a queenright honeybee colony, the policing of worker-laid eggs is very effective, which results in most workers working instead of attempting to reproduce. Thus, extreme altruism is due to both kinship and coercion. Altruism is frequently seen as a Darwinian puzzle but was not a puzzle that troubled Darwin. Darwin saw his difficulty in explaining how individuals that did not reproduce could evolve, given that natural selection was based on the accumulation of small heritable changes. The recognition that altruism is an evolutionary puzzle, and the solution was to wait another 100 years for William Hamilton.
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology
Cited by
72 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献