Ultrasensitive capacitive sensing system for smart medical devices with ability to monitor fracture healing stages

Author:

Conceição Cassandra1,Completo António123,Soares dos Santos Marco P.123ORCID

Affiliation:

1. Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal

2. TEMA—Centre for Mechanical Technology and Automation, 3810-193 Aveiro, Portugal

3. LASI—Intelligent Systems Associate Laboratory, Portugal

Abstract

Bone fractures are a global public health problem. A sustained increase in the number of incident cases has been observed in the last few decades, as well as the number of prevalent cases and the number of years lived with disability. Current monitoring techniques are based on imaging techniques, which are highly subjective, radioactive, expensive and unable to provide daily monitoring of fracture healing stages. The development of reliable, non-invasive and non-subjective technologies is mandatory to minimize non-union risks. Delayed healing and non-union conditions require timely medical intervention, such that preventive procedures and shortened treatment periods can be carried out. This work proposes the development of an ultrasensitive capacitive sensing system for smart implantable fixation implants with ability to effectively monitor the evolution of bone fractures. Both in vitro experimental tests and numerical simulations highlight that networks of co-surface capacitive systems are able: (i) to detect four different bone healing phases, capacitance decrease patterns occurring as the healing process progresses and (ii) to monitor the callus evolution in multiple target regions. These are very promising results that highlight the potential of capacitive technologies to minimize the individual and social burdens related to fracture management, mainly when delayed healing or non-union conditions occur.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3