SMART monitoring and treatment of fracture healing: Piezoelectric transducers and stepper motor actuators

Author:

Antić VladimirORCID,Protić DanijelaORCID,Stanković MiomirORCID,Manić MiodragORCID

Abstract

Introduction/purpose: SMART orthopedic systems use fixators with remote monitoring, processing, and communication capabilities to leverage healing progression data for personalized, real-time monitoring of a healing process. The fixators incorporate small and compact piezoelectric sensors that generate electrical signals upon the application of force to the piezoelectric diaphragm. This enables doctors to remotely guide fixation devices using indirectly and remotely controlled stepper motors known for their precision and accuracy. Reliability of stepper motors makes them a viable alternative for the mechanical tools traditionally used by doctors for fixator extension. Methods: This study focuses on the evaluation of sensor-based technology in orthopedic applications. The paper presents a theoretical framework for the application of SMART devices in the bone fracture healing process. It delves into the structure and functionality of piezoelectric transducers, offering a comprehensive insight into this technology and various engineering aspects of SMART systems. Results: The implementation of SMART systems has significantly enhanced doctor-patient communication. This improvement is facilitated through a dual-phase process involving gathering, processing, and transmitting the data wirelessly from the patient's (sensor) interface to the doctor who uses specialized software for data analysis and wireless transmission to the stepper motor actuator. Subsequently, the data is forwarded to the decoder at the motor site, where a motor controller generates the control signal for the stepper motor driver. Conclusion: SMART implants can provide doctors with quantitative data that can be used in directing a rehabilitation plan. The sensor-based technology offers insights into the stress induced by the callus formation enabling bidirectional communication between the doctor and the patient. The stepper motor is a tool that aids in personalized treatment from the distance.

Publisher

Centre for Evaluation in Education and Science (CEON/CEES)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3