Affiliation:
1. Department of Data Science and Artificial Intelligence, Faculty of Information Technology, Monash University, Clayton, Victoria, Australia
Abstract
Social insects are among the ecologically most successful collectively living organisms, with efficient division of labour a key feature of this success. Surprisingly, these efficient colonies often have a large proportion of inactive workers in their workforce, sometimes referred to as
lazy workers
. The dominant hypotheses explaining this are based on specific life-history traits, specific behavioural features or uncertain environments where inactive workers can provide a ‘reserve’ workforce that can spring into action quickly. While there is a number of experimental studies that show and investigate the presence of inactive workers, mathematical and computational models exploring specific hypotheses are not common. Here, using a simple mathematical model, we show that a parsimonious hypothesis can explain this puzzling social phenomenon. Our model incorporates social interactions and environmental influences into a game-theoretical framework and captures how individuals react to environment by allocating their activity according to environmental conditions. This model shows that inactivity can emerge under specific environmental conditions as a by-product of the task allocation process. Our model confirms the empirical observation that in the case of worker loss, prior homeostatic balance is re-established by replacing some of the lost force with previously inactive workers. Most importantly, our model shows that inactivity in social colonies can be explained without the need to assume an adaptive function for this phenomenon.
Funder
Australian Research Council
Subject
Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献