In silico framework to inform the design of repair constructs for peripheral nerve injury repair

Author:

Laranjeira S.12ORCID,Pellegrino G.1ORCID,Bhangra K. S.32ORCID,Phillips J. B.32,Shipley R. J.12ORCID

Affiliation:

1. UCL Mechanical Engineering, London, UK

2. UCL Centre for Nerve Engineering, UK

3. Department of Pharmacology, UCL School of Pharmacy, London, UK

Abstract

Peripheral nerve injuries affect millions of people per year and cause loss of sensation and muscle control alongside chronic pain. The most severe injuries are treated through a nerve autograft; however, donor site morbidity and poor outcomes mean alternatives are required. One option is to engineer nerve replacement tissues to provide a supportive microenvironment to encourage nerve regeneration as an alternative to nerve grafts. Currently, progress is hampered due to a lack of consensus on how to arrange materials and cells in space to maximize rate of regeneration. This is compounded by a reliance on experimental testing, which precludes extensive investigations of multiple parameters due to time and cost limitations. Here, a computational framework is proposed to simulate the growth of repairing neurites, captured using a random walk approach and parameterized against literature data. The framework is applied to a specific scenario where the engineered tissue comprises a collagen hydrogel with embedded biomaterial fibres. The size and number of fibres are optimized to maximize neurite regrowth, and the robustness of model predictions is tested through sensitivity analyses. The approach provides an in silico tool to inform the design of engineered replacement tissues, with the opportunity for further development to multi-cue environments.

Funder

Engineering and Physical Sciences Research Council

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Assessing tissue mechanical properties: Development of a custom-made tensile device and application on rodents sciatic nerves;Journal of the Mechanical Behavior of Biomedical Materials;2024-11

2. Perspectives on optimizing local delivery of drugs to peripheral nerves using mathematical models;WIREs Mechanisms of Disease;2023-01-09

3. Mathematical Modeling for Nerve Repair Research;Peripheral Nerve Tissue Engineering and Regeneration;2022

4. Mathematical Modeling for Nerve Repair Research;Peripheral Nerve Tissue Engineering and Regeneration;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3