Perspectives on optimizing local delivery of drugs to peripheral nerves using mathematical models

Author:

Laranjeira Simao1ORCID,Roberton Victoria H.2ORCID,Phillips James B.2ORCID,Shipley Rebecca J.1ORCID

Affiliation:

1. UCL Mechanical Engineering UCL Centre for Nerve Engineering London London UK

2. UCL School of Pharmacy UCL Centre for Nerve Engineering London London UK

Abstract

AbstractDrug therapies for treating peripheral nerve injury repair have shown significant promise in preclinical studies. Despite this, drug treatments are not used routinely clinically to treat patients with peripheral nerve injuries. Drugs delivered systemically are often associated with adverse effects to other tissues and organs; it remains challenging to predict the effective concentration needed at an injured nerve and the appropriate delivery strategy. Local drug delivery approaches are being developed to mitigate this, for example via injections or biomaterial‐mediated release. We propose the integration of mathematical modeling into the development of local drug delivery protocols for peripheral nerve injury repair. Mathematical models have the potential to inform understanding of the different transport mechanisms at play, as well as quantitative predictions around the efficacy of individual local delivery protocols. We discuss existing approaches in the literature, including drawing from other research fields, and present a process for taking forward an integrated mathematical‐experimental approach to accelerate local drug delivery approaches for peripheral nerve injury repair.This article is categorized under: Neurological Diseases > Molecular and Cellular Physiology Neurological Diseases > Computational Models Neurological Diseases > Biomedical Engineering

Funder

Engineering and Physical Sciences Research Council

Rosetrees Trust

Publisher

Wiley

Subject

Cell Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3