The structure of autocatalytic networks, with application to early biochemistry

Author:

Steel Mike1ORCID,Xavier Joana C.2ORCID,Huson Daniel H.3

Affiliation:

1. Biomathematics Research Centre, University of Canterbury, Christchurch, New Zealand

2. Institute for Molecular Evolution, Heinrich Heine Universität, Dusseldorf, Germany

3. Center for Bioinformatics, University of Tübingen, Tubingen, Germany

Abstract

Metabolism across all known living systems combines two key features. First, all of the molecules that are required are either available in the environment or can be built up from available resources via other reactions within the system. Second, the reactions proceed in a fast and synchronized fashion via catalysts that are also produced within the system. Building on early work by Stuart Kauffman, a precise mathematical model for describing such self-sustaining autocatalytic systems (RAF theory) has been developed to explore the origins and organization of living systems within a general formal framework. In this paper, we develop this theory further by establishing new relationships between classes of RAFs and related classes of networks, and developing new algorithms to investigate and visualize RAF structures in detail. We illustrate our results by showing how it reveals further details into the structure of archaeal and bacterial metabolism near the origin of life, and provide techniques to study and visualize the core aspects of primitive biochemistry.

Funder

Royal Society of New Zealand

European Research Council

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Theoretical perspective on synthetic man‐made life: Learning from the origin of life;Quantitative Biology;2023-11-27

2. Interior Operators and Their Relationship to Autocatalytic Networks;Acta Biotheoretica;2023-10-27

3. Assessment of Stoichiometric Autocatalysis across Element Groups;Journal of the American Chemical Society;2023-09-18

4. Persistent Subspaces of Reaction-Based Dynamical Systems;Match Communications in Mathematical and in Computer Chemistry;2023-04

5. A Path to Generative Artificial Selves;Progress in Artificial Intelligence;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3