Theoretical perspective on synthetic man‐made life: Learning from the origin of life

Author:

Peng Lu1,Zhang Zecheng12,Wang Xianyi1,Qiu Weiyi2,Zhou Liqian3,Xiao Hui1,Liu Chunxiuzi1,Tang Shaohua1,Qin Zhiwei4,Jiang Jiakun5,Di Zengru1,Liu Yu1

Affiliation:

1. International Academic Center of Complex Systems Beijing Normal University Zhuhai China

2. Swarma Research Beijing China

3. Department of Philosophy Shanghai Jiao Tong University Shanghai China

4. Center for Biological Science and Technology Advanced Institute of Natural Sciences, Beijing Normal University Zhuhai China

5. Center for Statistics and Data Science Beijing Normal University Zhuhai China

Abstract

AbstractCreating a man‐made life in the laboratory is one of life science’s most intriguing yet challenging problems. Advances in synthetic biology and related theories, particularly those related to the origin of life, have laid the groundwork for further exploration and understanding in this field of artificial life or man‐made life. But there remains a wealth of quantitative mathematical models and tools that have yet to be applied to this area. In this paper, we review the two main approaches often employed in the field of man‐made life: the top‐down approach that reduces the complexity of extant and existing living systems and the bottom‐up approach that integrates well‐defined components, by introducing the theoretical basis, recent advances, and their limitations. We then argue for another possible approach, namely “bottom‐up from the origin of life”: Starting with the establishment of autocatalytic chemical reaction networks that employ physical boundaries as the initial compartments, then designing directed evolutionary systems, with the expectation that independent compartments will eventually emerge so that the system becomes free‐living. This approach is actually analogous to the process of how life originated. With this paper, we aim to stimulate the interest of synthetic biologists and experimentalists to consider a more theoretical perspective, and to promote the communication between the origin of life community and the synthetic man‐made life community.

Publisher

Wiley

Subject

Applied Mathematics,Computer Science Applications,Biochemistry, Genetics and Molecular Biology (miscellaneous),Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3