Predicting potential SARS-CoV-2 mutations of concern via full quantum mechanical modelling

Author:

Zaccaria Marco1,Genovese Luigi2,Lawhorn Brigitte E.1,Dawson William3,Joyal Andrew S.1,Hu Jingqing1,Autissier Patrick1,Nakajima Takahito3,Johnson Welkin E.1,Fofana Ismael1,Farzan Michael456,Momeni Babak1ORCID

Affiliation:

1. Department of Biology, Boston College, Chestnut Hill, MA, USA

2. Université Grenoble Alpes, CEA, INAC-MEM, L Sim, Grenoble, France

3. RIKEN Center for Computational Science, Kobe, Japan

4. Department of Pediatrics, Harvard Medical School, Boston, MA, USA

5. Center for Integrated Solutions for Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA, USA

6. Division of Infectious Disease, Boston Children's Hospital, Boston, MA, USA

Abstract

Ab initio quantum mechanical models can characterize and predict intermolecular binding, but only recently have models including more than a few hundred atoms gained traction. Here, we simulate the electronic structure for approximately 13 000 atoms to predict and characterize binding of SARS-CoV-2 spike variants to the human ACE2 (hACE2) receptor using the quantum mechanics complexity reduction (QM-CR) approach. We compare four spike variants in our analysis: Wuhan, Omicron, and two Omicron-based variants. To assess binding, we mechanistically characterize the energetic contribution of each amino acid involved, and predict the effect of select single amino acid mutations. We validate our computational predictions experimentally by comparing the efficacy of spike variants binding to cells expressing hACE2. At the time we performed our simulations (December 2021), the mutation A484K which our model predicted to be highly beneficial to ACE2 binding had not been identified in epidemiological surveys; only recently (August 2023) has it appeared in variant BA.2.86. We argue that our computational model, QM-CR, can identify mutations critical for intermolecular interactions and inform the engineering of high-specificity interactors.

Funder

European Centre of Excellence MaX

Division of Chemical, Bioengineering, Environmental, and Transport Systems

Publisher

The Royal Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3