Uncertainty quantification of a three-dimensional in-stent restenosis model with surrogate modelling

Author:

Ye Dongwei1ORCID,Zun Pavel12ORCID,Krzhizhanovskaya Valeria1ORCID,Hoekstra Alfons G.1ORCID

Affiliation:

1. Computational Science Lab, Institute for Informatics, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands

2. National Center for Cognitive Research, ITMO University, Saint Petersburg, Russia

Abstract

In-stent restenosis is a recurrence of coronary artery narrowing due to vascular injury caused by balloon dilation and stent placement. It may lead to the relapse of angina symptoms or to an acute coronary syndrome. An uncertainty quantification of a model for in-stent restenosis with four uncertain parameters (endothelium regeneration time, the threshold strain for smooth muscle cell bond breaking, blood flow velocity and the percentage of fenestration in the internal elastic lamina) is presented. Two quantities of interest were studied, namely the average cross-sectional area and the maximum relative area loss in a vessel. Owing to the high computational cost required for uncertainty quantification, a surrogate model, based on Gaussian process regression with proper orthogonal decomposition, was developed and subsequently used for model response evaluation in the uncertainty quantification. A detailed analysis of the uncertainty propagation is presented. Around 11% and 16% uncertainty is observed on the two quantities of interest, respectively, and the uncertainty estimates show that a higher fenestration mainly determines the uncertainty in the neointimal growth at the initial stage of the process. The uncertainties in blood flow velocity and endothelium regeneration time mainly determine the uncertainty in the quantities of interest at the later, clinically relevant stages of the restenosis process.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

European Commission

Russian Science Foundation

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3