Reconstructing blood flow in data-poor regimes: a vasculature network kernel for Gaussian process regression

Author:

Ashtiani Shaghayegh Z.1,Sarabian Mohammad2,Laksari Kaveh3,Babaee Hessam1ORCID

Affiliation:

1. Department of Mechanical Engineering and Material Science, University of Pittsburgh , Pittsburgh, PA, USA

2. Department of Biomedical Engineering, University of Arizona , Tucson, AZ, USA

3. Department of Mechanical Engineering, University of California Riverside , Riverside, CA, USA

Abstract

Blood flow reconstruction in the vasculature is important for many clinical applications. However, in clinical settings, the available data are often quite limited. For instance, transcranial Doppler ultrasound is a non-invasive clinical tool that is commonly used in clinical settings to measure blood velocity waveforms at several locations. This amount of data is grossly insufficient for training machine learning surrogate models, such as deep neural networks or Gaussian process regression. In this work, we propose a Gaussian process regression approach based on empirical kernels constructed by data generated from physics-based simulations—enabling near-real-time reconstruction of blood flow in data-poor regimes. We introduce a novel methodology to reconstruct the kernel within the vascular network. The proposed kernel encodes both spatiotemporal and vessel-to-vessel correlations, thus enabling blood flow reconstruction in vessels that lack direct measurements. We demonstrate that any prediction made with the proposed kernel satisfies the conservation of mass principle. The kernel is constructed by running stochastic one-dimensional blood flow simulations, where the stochasticity captures the epistemic uncertainties, such as lack of knowledge about boundary conditions and uncertainties in vasculature geometries. We demonstrate the performance of the model on three test cases, namely, a simple Y-shaped bifurcation, abdominal aorta and the circle of Willis in the brain.

Funder

National Institutes of Health

Air Force Office of Scientific Research

Publisher

The Royal Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3