Mathematical models and deep learning for predicting the number of individuals reported to be infected with SARS-CoV-2

Author:

Fokas A. S.123ORCID,Dikaios N.24ORCID,Kastis G. A.2ORCID

Affiliation:

1. Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK

2. Research Center of Mathematics, Academy of Athens, Athens 11527, Greece

3. Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA

4. Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, UK

Abstract

We introduce a novel methodology for predicting the time evolution of the number of individuals in a given country reported to be infected with SARS-CoV-2. This methodology, which is based on the synergy of explicit mathematical formulae and deep learning networks, yields algorithms whose input is only the existing data in the given country of the accumulative number of individuals who are reported to be infected. The analytical formulae involve several constant parameters that were determined from the available data using an error-minimizing algorithm. The same data were also used for the training of a bidirectional long short-term memory network. We applied the above methodology to the epidemics in Italy, Spain, France, Germany, USA and Sweden. The significance of these results for evaluating the impact of easing the lockdown measures is discussed.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3