An algebraic formula, deep learning and a novel SEIR-type model for the COVID-19 pandemic

Author:

Fokas A. S.123ORCID,Dikaios N.2ORCID,Yortsos Y. C.3

Affiliation:

1. Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK

2. Mathematics Research Centre, Academy of Athens, 11527 Athens, Greece

3. Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA

Abstract

The most extensively used mathematical models in epidemiology are the susceptible-exposed-infectious-recovered (SEIR) type models with constant coefficients. For the first wave of the COVID-19 epidemic, such models predict that at large times equilibrium is reached exponentially . However, epidemiological data from Europe suggest that this approach is algebraic . Indeed, accurate long-term predictions have been obtained via a forecasting model only if it uses an algebraic as opposed to the standard exponential formula. In this work, by allowing those parameters of the SEIR model that reflect behavioural aspects (e.g. spatial distancing) to vary nonlinearly with the extent of the epidemic, we construct a model which exhibits asymptoticly algebraic behaviour. Interestingly, the emerging power law is consistent with the typical dynamics observed in various social settings. In addition, using reliable epidemiological data, we solve in a numerically robust way the inverse problem of determining all model parameters characterizing our novel model. Finally, using deep learning, we demonstrate that the algebraic forecasting model used earlier is optimal.

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3