Whirligig beetles as corralled active Brownian particles

Author:

Devereux Harvey L.12ORCID,Twomey Colin R.3,Turner Matthew S.456,Thutupalli Shashi27ORCID

Affiliation:

1. Department of Mathematics, University of Warwick, Coventry CV4 7AL, UK

2. Simons Center for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore 560065, India

3. Department of Biology, and Mind Center for Outreach, Research and Education, University of Pennsylvania, Philadelphia, PA, USA

4. Department of Physics, University of Warwick, Coventry CV4 7AL, UK

5. Centre for Complexity Science, University of Warwick, Coventry CV4 7AL, UK

6. Department of Chemical Engineering, Kyoto University, Kyoto 615-8510, Japan

7. International Centre for Theoretical Sciences, Tata Institute for Fundamental Research, Bangalore 560089, India

Abstract

We study the collective dynamics of groups of whirligig beetles Dineutus discolor (Coleoptera: Gyrinidae) swimming freely on the surface of water. We extract individual trajectories for each beetle, including positions and orientations, and use this to discover (i) a density-dependent speed scaling like vρ ν with ν ≈ 0.4 over two orders of magnitude in density (ii) an inertial delay for velocity alignment of approximately 13 ms and (iii) coexisting high and low-density phases, consistent with motility-induced phase separation (MIPS). We modify a standard active Brownian particle (ABP) model to a corralled ABP (CABP) model that functions in open space by incorporating a density-dependent reorientation of the beetles, towards the cluster. We use our new model to test our hypothesis that an motility-induced phase separation (MIPS) (or a MIPS like effect) can explain the co-occurrence of high- and low-density phases we see in our data. The fitted model then successfully recovers a MIPS-like condensed phase for N = 200 and the absence of such a phase for smaller group sizes N = 50, 100.

Funder

Japan Society for the Promotion of Science

Leverhulme Trust

Department of Atomic Energy, Government of India

Max-Planck-Gesellschaft

Simons Foundation

Engineering and Physical Sciences Research Council

National Science Foundation Graduate Research Fellowship

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3