Abstract
AbstractSelf-propelled particles in anisotropic environments can exhibit a motility that depends on their orientation. This dependence is relevant for a plethora of living organisms but difficult to study in controlled environments. Here, we present a macroscopic system of self-propelled vibrated granular particles on a striated substrate that displays orientation-dependent motility. An extension of the active Brownian motion model involving orientation-dependent motility and inertial effects reproduces and explains our experimental observations. The model can be applied to general n-fold symmetric anisotropy and can be helpful for predictive optimization of the dynamics of active matter in complex environments.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献