Mechanical factors in the excitation of clupeid lateral lines

Author:

Abstract

The excitation of lateral line sense organs (neuromasts) might be expected to depend on differences of movement between the liquid inside the main lateral line canals (the ones that contain the neuromasts) and the walls of these canals. We have investigated this net movement in relation to events in the water around fish. Liquid displacements inside a given part of a main lateral line canal of the sprat ( Sprattus sprattus (L.)) are, at any one frequency, linearly related to those in the medium (sea water) adjacent to this part. For the parts of the canal system studied, and below about 80 Hz, the ratio of displacement inside the canal to that in the medium falls with frequency, i. e. the displacement inside the canal follows the velocity in the medium. Sea water displacements in a given length of a main lateral line canal system are proportional to the component of the external velocity that is parallel to the canal. For this component the ratio of displacements inside and outside the lateral line approaches unity at around 80 Hz. The behaviour of a lateral line canal is close to that of a straight capillary tube of roughly the same cross sectional area. Displacements in the canal are advanced in phase relative to those in the external medium and these phase advances are a little larger than those found in capillaries. There is very little mechanical coupling between neighbouring parts of the main canals. Since the cupulae of the neuromasts of the sprat lateral line are driven by frictional forces, the stimulus to a neuromast will (below 80 Hz) be proportional to the acceleration of the medium adjacent to the lateral line. Sprats and fish of three other species ( Clupea harengus L., Hyperoplus lanceolatus (Lesauvage), and Trachurus trachurus (L.) have been shown, when suspended in sound fields emitted by pulsating and vibrating sources, to behave longitudinally as rigid bodies. Under many conditions it proved possible to calculate the longitudinal movements of fish from the differences of pressure between snout and tail. From these two kinds of result we have calculated for a variety of positions in fields around vibrating bodies the motion of a fish and the motion of the liquid in the canals and so estimated the effective stimulus to different parts of the lateral line system. When such calculations were made for a vibrating source of the dimensions of a sprat tail, and for distances comparable to the inter-fish distance within a school, we found that the patterns of net velocities at different neuromasts change dramatically with the position or angle of the fish relative to the source. We estimate that the sprat lateral line system excited in this way could detect a neighbouring fish in a school at distances of up to a few fish lengths. The sprat lateral line sensory system is well suited to giving sensory information in such activities as schooling.

Publisher

The Royal Society

Subject

General Medicine

Cited by 151 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3