A multisensory perspective on near-field detection and localization of hydroacoustic sources

Author:

Coombs Sheryl1

Affiliation:

1. Department of Biological Sciences, Bowling Green State University , Bowling Green, Ohio 43402, USA

Abstract

This paper gives a brief synopsis of the research career of S.C. in fish bioacoustics with an emphasis on dipole near fields. The hydroacoustic nature of the dipole near field and the effective stimuli to lateral line and auditory systems combine to produce a multisensory, range-fractionated region that is critically important to many fish behaviors. The mottled sculpin and goldfish lateral lines encode the spatial complexities of the near field as spatial excitation patterns along the body surface to provide instantaneous snapshots of various source features such as distance, orientation, and direction of movement. In contrast, the pressure-sensitive channel of the goldfish auditory system [the anterior swim bladder (SB)-saccule complex] encodes the spatial complexities in a temporal fashion whenever the position or orientation of the source changes with respect to the anterior SB. A full appreciation for how these somatotopic and egocentric representations guide fish behavior requires an understanding of how multisensory information, including vision, is combined in sensorimotor regions of the brain to effect behavior. A brief overview of vertebrate brain organization indicates that behaviors directed to or away from hydroacoustic sources likely involve a variety of mechanisms, behavioral strategies, and brain regions.

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Structural and functional evolution of the mechanosensory lateral line system of fishes;The Journal of the Acoustical Society of America;2023-12-01

2. A journey through the field of fish hearing;The Journal of the Acoustical Society of America;2023-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3