Review Lecture - Picoplankton

Author:

Abstract

Picoplankton consists of those organisms found in the open waters of seas and lakes which are capable of passing through a filter with 2 μm pores but not through one with 0.2 μm pores. Cells in this size range are well adapted to planktonic life in that they sink extremely slowly and are more efficient than larger forms in taking up nutrients and absorbing radiant energy. Picophytoplankton includes coccoid cyanobacteria and a variety of eukaryotic algal forms. Strains studied in the laboratory have all been found to show maximum growth at relatively low irradiances, the eukaryotic forms being more efficient than the cyanobacteria in utilizing the blue light which predominates at the bottom of the photic zone in clear oceanic waters. Oceanic strains of coccoid cyanobacteria, however, are characterized by high concentrations of phycoerythrin, which appears to function as a nitrogenous reserve as well as an accessory pigment in photosynthesis. The seasonal and spatial distribution of picophytoplankton seems explicable in terms of these physiological characteristics. Numbers of coccoid cyanobacteria have shown a striking correlation with temperature in a number of different situations. Heterotrophic bacteria are also included in the picoplankton, and a review of the information concerning them suggests that they form a highly dynamic population subsisting on dissolved organic matter liberated by living phytoplankton and zooplankton and by decomposition of dead matter. The productivity of this population in the euphotic zone approaches that of the phytoplankton. Both the picophytoplankton and the bacterioplankton are preyed on by phagotrophic flagellates. Both bacteria and flagellates are active in regeneration of mineral nutrients. Regardless of the salinity, temperature or nutrient status of the water, the numbers of heterotrophic bacteria, picophytoplankton and flagellates tend to be around 10 6 , 10 4 and 10 3 organisms per millilitre respectively. It is suggested that these populations form a basic, self-sustaining and self-regulating community in all natural waters. From present information, it seems that little of the energy which passes through this community finds its way into the larger planktonic organisms, but the role of picoplankton in recycling nutrient elements is of great importance in the marine ecosystem.

Publisher

The Royal Society

Subject

General Medicine

Reference152 articles.

1. Alberte R. S. & Kirchman D. L. 1985 Role of phycoerythrin in nitrogen metabolism in the marine Synechococcus spp. 5th International Symposium on Photosynthetic Prokaryotes: Abstracts p. 25. Zurich: Inst. Molekularbiologie Biophysik Eidg. Tech. Hochschule.

2. Seasonal variations in phytoplankton and glycollate concentrations in the Menai Straits, Anglesey

3. Bacterioplankton growth in seawater: I. Growth kinetics and cellular characteristics in seawater cultures

4. Bacterivory by microheterotrophic flagellates in seawater samples

5. Release of aminoacids and inorganic nutrients by heterotrophic marine micro-flagellates

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3