Vertical Distribution of Phytoplankton Community and Pigment Production in the Yellow Sea and the East China Sea during the Late Summer Season

Author:

Kang Jae-JoongORCID,Min Jun-Oh,Kim YejinORCID,Lee Chang-Hwa,Yoo Hyeju,Jang Hyo-Keun,Kim Myung-Joon,Oh Hyun-Ju,Lee Sang-HeonORCID

Abstract

Phytoplankton community structure, which plays an important role in determining productivity and food web structure, can provide important information for understanding variations in marine ecosystems under projected climate change scenarios. Rising temperatures due to climate change will increase and intensify water stratification. To understand the community composition and distribution characteristics of phytoplankton under stratified conditions, phytoplankton pigments were analyzed in the Yellow Sea (YS) and East China Sea (ECS) during the late summer season. In addition, pigment production was measured to estimate the physiological characteristics of phytoplankton relating to light, which is an essential element of photosynthesis. During our observation period, no distinct differences were found in the community composition and pigment production of phytoplankton in the YS and the ECS, but differences in the vertical distribution were observed. Overall, the dominant phytoplankton classes at the surface depth were pico-sized cyanobacteria (46.1%), whereas micro- and nano-sized diatoms (42.9%) were the abundant most classes at a 1% light depth. The major factors controlling the vertical distributions of the phytoplankton community were temperature and nutrients (i.e., nitrate and ammonium). Cyanobacteria were positively correlated with water temperature and ammonium, whereas diatoms were negatively related to water temperature and positively correlated with nitrates. Based on the pigment production, it was found that cyanobacteria at the surface layer encountered excessive irradiance conditions during the study period. The productivity of the cyanobacterial community could be decreased under high-light and high-temperature conditions. This means that cyanobacteria could have a negative influence on the quantity and quality of food available to upper trophic organisms under warmer conditions.

Funder

Pusan National University

Ministry of Oceans and Fisheries

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3