Photophysiological Characterization of Phytoplankton by Measuring Pigment Production Rates: A Description of Detail Method and a Case Study

Author:

Kang Jae-Joong1,Min Jun-Oh2ORCID,Joo Huitae1,Youn Seok-Hyun1,Lee Sang-Heon3ORCID

Affiliation:

1. National Institute of Fisheries and Sciences, Busan 46083, Republic of Korea

2. Division of Polar Ocean Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea

3. Department of Oceanography, Marine Science Institute, Pusan National University, Busan 46241, Republic of Korea

Abstract

Each phytoplankton species has intrinsic pigments, which result in different photophysiological characteristics in response to natural light conditions. Therefore, phytoplankton pigments provide important information on the photosynthetic activity that produces the basic food source for marine ecosystems. This study addresses the challenge of accurately measuring pigment production rates in phytoplankton communities. Two strategies are proposed for improving measurement sensitivity. Firstly, increasing the injection of 13C substrate into incubation bottles up to 15% of the total dissolved inorganic carbon is recommended, with minimal impact on pigment production rate determinations. Secondly, optimizing sample injection volume for high-performance liquid chromatography balances analysis time and dilution effects. The in situ field experiments conducted in this study for pigment production measurements revealed diminished activity of photoprotective mechanisms involving zeaxanthin and diatoxanthin during the study period. Furthermore, the results showed that the notable production rates of chl-b (0.069–0.105 ng C L–1 h–1, 74–89% of total accessary pigment production rates), an accessory pigment mainly attributed to prasinophytes, potentially due to restricted light availability. Prioritization of chl-b production over primary production (negative correlation between primary and chl-b production; R2 = 0.6662) highlights the potential impact of compensatory pigment-related activities on overall phytoplankton productivity. In conclusion, this study underscores the significance of directly quantifying pigment production rates to enhance our comprehension of phytoplankton photophysiology and the production mechanisms specific to various pigments.

Funder

Korea Institute of Marine Science & Technology Promotion

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3