A vitamin B 12 transporter in Mycobacterium tuberculosis

Author:

Gopinath Krishnamoorthy1,Venclovas Česlovas2,Ioerger Thomas R.3,Sacchettini James C.3,McKinney John D.4,Mizrahi Valerie1,Warner Digby F.1

Affiliation:

1. MRC/NHLS/UCT Molecular Mycobacteriology Research Unit and DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Institute of Infectious Disease and Molecular Medicine and Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town 7925, South Africa

2. Laboratory of Bioinformatics, Institute of Biotechnology, Vilnius, Lithuania

3. Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA

4. Global Health Institute, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland

Abstract

Vitamin B 12 -dependent enzymes function in core biochemical pathways in Mycobacterium tuberculosis , an obligate pathogen whose metabolism in vivo is poorly understood. Although M. tuberculosis can access vitamin B 12 in vitro , it is uncertain whether the organism is able to scavenge B 12 during host infection. This question is crucial to predictions of metabolic function, but its resolution is complicated by the absence in the M. tuberculosis genome of a direct homologue of BtuFCD, the only bacterial B 12 transport system described to date. We applied genome-wide transposon mutagenesis to identify M. tuberculosis mutants defective in their ability to use exogenous B 12 . A small proportion of these mapped to Rv1314c , identifying the putative PduO-type ATP : co(I)rrinoid adenosyltransferase as essential for B 12 assimilation. Most notably, however, insertions in Rv1819c dominated the mutant pool, revealing an unexpected function in B 12 acquisition for an ATP-binding cassette (ABC)-type protein previously investigated as the mycobacterial BacA homologue. Moreover, targeted deletion of Rv1819c eliminated the ability of M. tuberculosis to transport B 12 and related corrinoids in vitro . Our results establish an alternative to the canonical BtuCD-type system for B 12 uptake in M. tuberculosis , and elucidate a role in B 12 metabolism for an ABC protein implicated in chronic mycobacterial infection.

Publisher

The Royal Society

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3