Enrichment of lithium from salt lake brine by forward osmosis

Author:

Li Jinli12ORCID,Wang Min12,Zhao Youjing12,Yang Hongjun12,Zhong Yuan12

Affiliation:

1. Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, People's Republic of China

2. Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Xining 810008, People's Republic of China

Abstract

Forward osmosis (FO) is a concentration process based on the natural phenomena of osmosis. It is considered a breakthrough technology that can be potentially used for concentrating solutions and suspensions. The diluted nature of brine restricts the treatment technologies that can be applied. Then, brine concentration by FO could represent a new emerging technology enabling the application of a wider range of treatment alternatives. The performance of concentrated brine depending upon FO membranes was studied at normal temperature and pressure in this research. Cellulose triacetates on radio-frequency-weldable non-woven support (CTA-NW) and a thin-film composite with embedded polyester screen support (TFC-ES) were compared; and their orientations were considered. The brine was from Chaerhan Salt Lake after extracting potassium as the feed solution, NaCl solution or MgCl 2 solution as the draw solution. The results indicated that CTA-NW exhibited better concentration performance than TFC-ES, while the water fluxes of the two membranes were exactly the opposite. In the case of CTA-NW in active layer facing feed solution orientation with MgCl 2 as the draw solution, the concentration factor of Li + was nearly 3.0. Quantitative structure–activity relationship of FO membranes and concentration characteristics was correlated, based on results of SEM, FTIR and contact angles studies. The concentration performance could be mainly attributed to the porosity and the thickness of FO membranes; while the water flux was dependent on the hydrophily of FO membrane surface.

Funder

Saline Lake Chemical Science Research United Foudation of Qaidam

Publisher

The Royal Society

Subject

Multidisciplinary

Reference34 articles.

1. Recovery of lithium from Uyuni salar brine

2. Recent progress in rechargeable nickel/metal hydride and lithium-ion miniature rechargeable batteries

3. LiFePO4–Fe2P–C composite cathode: An environmentally friendly promising electrode material for lithium-ion battery

4. Energetic metal of the 21th century: the use of metal lithium in nuclear fusion;Wang XL;Gold. J.,2001

5. Sustainable exploitation and comprehensive utilization of salt lake resources in China;Ma PH;Prog. Chem.,2009

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3