Affiliation:
1. School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
2. Key Laboratory of Fluid and Power Machinery, Ministry of Education, Xihua University, Chengdu 610039, People's Republic of China
Abstract
With the development of cavitation, the high-energy pressure wave from a cavitation bubble collapsing is detrimental to the stable operation of centrifugal pumps. The present paper concentrates on pressure pulsations under cavitation conditions, and pressure amplitudes at the blade-passing frequency (
f
BPF
) and RMS values in the 0–500 Hz frequency band are combined to investigate cavitation-induced pressure pulsations. The results show that components at
f
BPF
always dominate the pressure spectrum even at the full cavitation stage. For points P1–P7 on the volute side wall, with a decreasing cavitation number, the pressure energy first remains unchanged and then it rises rapidly after the critical point. For point In1 in a volute suction pipe located close to the cavitation region, the pressure energy changes slightly at high cavitation numbers; then for a particular cavitation number range, the pressure energy decreases, and finally increases again. For different flow rates, the pressure energy at the critical point is much lower than the initial amplitude at the non-cavitation condition for In1. This demonstrates that the cavitation cloud in the typical stage is partially compressible, and the emitted pressure wave from a collapsing cavitation bubble is absorbed and attenuated significantly. Finally, this leads to the pressure energy decreasing rapidly for the measuring point In1 near the cavitation region.
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献