Affiliation:
1. Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
Abstract
This paper sets out an approximate analytical model describing the nonlinear evolution of a Gaussian wave group in deep water. The model is derived using the conserved quantities of the cubic nonlinear Schrödinger equation (NLSE). The key parameter for describing the evolution is the amplitude-to-wavenumber bandwidth ratio, a quantity analogous to the Benjamin–Feir index for random sea-states. For smaller values of this parameter, the group is wholly dispersive, whereas for more nonlinear cases, solitons are formed. Our model predicts the characteristics and the evolution of the groups in both regimes. These predictions are found to be in good agreement with numerical simulations using the NLSE and are in qualitative agreement with numerical results from a fully nonlinear potential flow solver and experimental results.
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献