Micromechanics of friction: effects of nanometre-scale roughness

Author:

Li Qunyang1,Kim Kyung-Suk1

Affiliation:

1. Division of Engineering, Brown UniversityProvidence, RI 02912, USA

Abstract

Nanometre-scale roughness on a solid surface has significant effects on friction, since intersurface forces operate predominantly within a nanometre-scale gap distance in frictional contact. To study the effects of nanometre-scale roughness, two novel atomic force microscope friction experiments were conducted, each using a gold surface sliding against a flat mica surface as the representative friction system. In one of the experiments, a pillar-shaped single nano-asperity of gold was used to measure the molecular-level frictional behaviour. The adhesive friction stress was measured to be 264 MPa and the molecular friction factor 0.0108 for a direct gold–mica contact. The nano-asperity was flattened in contact, although its hardness at this length scale is estimated to be 3.68 GPa. It was found that such a high pressure could be reached with the help of condensed water capillary forces. In the second experiment, a micrometre-scale asperity with nanometre-scale roughness exhibited a single-asperity-like response of friction. However, the apparent frictional stress, 40.5 MPa, fell well below the Hurtado–Kim model prediction of 208–245 MPa. In addition, the multiple nano-asperities were flattened during the frictional process, exhibiting load- and slip-history-dependent frictional behaviour.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3