PeakForce AFM Analysis Enhanced with Model Reduction Techniques

Author:

Chang Xuyang12ORCID,Hallais Simon2ORCID,Danas Kostas2ORCID,Roux Stéphane1ORCID

Affiliation:

1. Université Paris-Saclay/CentraleSupélec/ENS Paris-Saclay/C.N.R.S., LMPS—Laboratoire de Mécanique Paris-Saclay, 91190 Gif-sur-Yvette, France

2. LMS, C.N.R.S., École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France

Abstract

PeakForce quantitative nanomechanical AFM mode (PF-QNM) is a popular AFM technique designed to measure multiple mechanical features (e.g., adhesion, apparent modulus, etc.) simultaneously at the exact same spatial coordinates with a robust scanning frequency. This paper proposes compressing the initial high-dimensional dataset obtained from the PeakForce AFM mode into a subset of much lower dimensionality by a sequence of proper orthogonal decomposition (POD) reduction and subsequent machine learning on the low-dimensionality data. A substantial reduction in user dependency and subjectivity of the extracted results is obtained. The underlying parameters, or “state variables”, governing the mechanical response can be easily extracted from the latter using various machine learning techniques. Two samples are investigated to illustrate the proposed procedure (i) a polystyrene film with low-density polyethylene nano-pods and (ii) a PDMS film with carbon–iron particles. The heterogeneity of material, as well as the sharp variation in topography, make the segmentation challenging. Nonetheless, the underlying parameters describing the mechanical response naturally offer a compact representation allowing for a more straightforward interpretation of the high-dimensional force–indentation data in terms of the nature (and proportion) of phases, interfaces, or topography. Finally, those techniques come with a low processing time cost and do not require a prior mechanical model.

Funder

Becton and Dickinson Corporation

European Research Council

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3