On analyticity of travelling water waves

Author:

Nicholls David P1,Reitich Fernando2

Affiliation:

1. Department of Mathematics, University of Notre DameNotre Dame, IN 46556, USA

2. School of Mathematics, University of Minnesota Minneapolis, MN 55455, USA

Abstract

In this paper we establish the existence and analyticity of periodic solutions of a classical free-boundary model of the evolution of three-dimensional, capillary–gravity waves on the surface of an ideal fluid. The result is achieved through the application of bifurcation theory to a boundary perturbation formulation of the problem, and it yields analyticity jointly with respect to the perturbation parameter and the spatial variables. The travelling waves we find can be interpreted as resulting from the (nonlinear) interaction of two two-dimensional wavetrains, giving rise to a periodic travelling pattern. Our analyticity theorem extends the most sophisticated results known to date in the absence of resonance; ‘short crested waves’, which result from the interaction of two wavetrains with unit amplitude ratio are realized as a special case. Our method of proof also sheds light on the convergence and conditioning properties of classical boundary perturbation methods for the numerical approximation of travelling surface waves. Indeed, we demonstrate that the rather unstable numerical behaviour of these approaches can be attributed to the strong but subtle cancellations in the formulas underlying their classical implementations. These observations motivate the derivation and use of an alternative, stable, formulation which, in addition to providing our method of proof, suggests new stabilized implementations of boundary perturbation algorithms.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3