Adjoint-based high-order spectral method of wave simulation for coastal bathymetry reconstruction

Author:

Wu JieORCID,Hao XuantingORCID,Li TianyiORCID,Shen LianORCID

Abstract

Bathymetry is an important factor affecting wave propagation in coastal environments but is often challenging to measure in practice. We propose a method for inferring coastal bathymetry from spatial variations in surface waves by combining a high-order spectral method for wave simulation and an adjoint-based variational data assimilation method. Recursion-formed adjoint equations are derived to obtain the sensitivity of the wave surface elevation to the underlying bottom topography to any desired order of nonlinear perturbation. We also develop a multiscale optimisation method to eliminate spurious high-wavenumber fluctuations in the reconstructed bathymetry data caused by sensitivity variations over the different length scales of surface waves. The proposed bottom detection method is validated with a realistic coastal wave environment involving complex two-dimensional bathymetry features, non-periodic incident waves and nonlinear broadband multidirectional waves. In numerical experiments at both laboratory and field scales, the bathymetry reconstructed from our method agrees well with the ground truth. We also show that our method is robust against imperfect surface wave data in the presence of limited sampling frequency and noise.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3