Affiliation:
1. Department of Mathematical Sciences, Durham UniversityDurham DH1 3LE, UK
Abstract
We show that the global nonlinear stability threshold for convection with a thermal non-equilibrium model is exactly the same as the linear instability boundary. This result is shown to hold for the porous medium equations of Darcy, Forchheimer or Brinkman. This optimal result is important because it shows that linearized instability theory has captured completely the physics of the onset of convection. The equivalence of the linear instability and nonlinear stability boundaries is also demonstrated for thermal convection in a non-equilibrium model with the Darcy law, when the layer rotates with a constant angular velocity about an axis in the same direction as gravity.
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
108 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献