Affiliation:
1. Institute of Information and Mathematical Sciences, Massey UniversityAuckland 0745, New Zealand
2. Department of Statistical Science, University College LondonLondon WC1E 6BT, UK
3. Department of Civil and Environmental Engineering, Imperial College LondonLondon SW7 2AZ, UK
Abstract
A conceptual stochastic model of rainfall is proposed in which storm origins occur in a Poisson process, where each storm has a random lifetime during which rain cell origins occur in a secondary Poisson process. In addition, each cell has a random lifetime during which instantaneous random depths (or ‘pulses’) of rain occur in a further Poisson process. A key motivation behind the model formulation is to account for the variability in rainfall data over small (e.g. 5 min) and larger time intervals. Time-series properties are derived to enable the model to be fitted to aggregated rain gauge data. These properties include moments up to third order, the probability that an interval is dry, and the autocovariance function. To allow for distinct storm types (e.g. convective and stratiform), several processes may be superposed. Using the derived properties, a model consisting of two storm types is fitted to 60 years of 5 min rainfall data taken from a site near Wellington, New Zealand, using sample estimates taken at 5 min, 1 hour, 6 hours and daily levels of aggregation. The model is found to fit moments of the depth distribution up to third order very well at these time scales. Using the fitted model, 5 min series are simulated, and annual maxima are extracted and compared with equivalent values taken from the historical record. A good fit in the extremes is found at both 1 and 24 hour levels of aggregation, although at the 5 min level there is some underestimation of the historical values. Proportions of time intervals with depths below various low thresholds are extracted from the simulated and historical series and compared. A tendency for underestimation of the historical values is evident at some time scales, with a close fit being obtained as the threshold is increased.
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
76 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献