Bartlett–Lewis Model Calibrated with Satellite-Derived Precipitation Data to Estimate Daily Peak 15 Min Rainfall Intensity

Author:

Islam Md. Atiqul1ORCID,Yu Bofu1,Cartwright Nick1

Affiliation:

1. School of Engineering and Built Environment, Griffith University, Southport, QLD 4222, Australia

Abstract

Temporal variability of rainfall is extreme in the rangelands of northern Australia and occurs at annual, decadal, and even longer timescales. To maintain long-term productivity of the rangelands of northern Australia under highly variable rainfall conditions, suitable land management practices are assessed using rangeland biophysical models, e.g., GRASP (GRASs Production). The daily maxima of the 15 min rainfall intensity (I15) are used to predict runoff and moisture retention in the model. The performance of rangeland biophysical models heavily relies on the I15 estimates. As the number of pluviograph stations is very limited in northern Australian rangelands, an empirical I15 model (Fraser) was developed using readily available daily climate variables, i.e., daily rainfall total, daily diurnal temperature range, and daily minimum temperature. The aim of this study is to estimate I15 from daily rainfall totals using a well-established disaggregation scheme coupled with the Bartlett–Lewis rectangular pulse (BLRP) model. In the absence of pluviograph data, the BLRP models (RBL-E and RBL-G) were calibrated with the precipitation statistics estimated using the Integrated Multi-satellitE Retrievals for GPM (global precipitation measurement) (IMERG; 30 min, 0.1° resolution) precipitation product. The Fraser, RBL-E, and RBL-G models were assessed using 1 min pluviograph data at a single test site in Darwin. The results indicated that all three models tended to underestimate the observed I15, while a serious underestimation was observed for RBL-E and RBL-G. The underestimation by the Fraser, RBL-E, and RBL-G models consisted of 23%, 38%, and 50% on average, respectively. Furthermore, the Fraser model represented 29% of the variation in observed I15, whereas RBL-E and RBL-G represented only 7% and 11% of the variation, respectively. A comparison of RBL-E and RBL-G suggested that the difference in the spatial scales of IMERG and pluviograph data needs to be addressed to improve the performance of RBL-E and RBL-G. Overall, the findings of this study demonstrate that the BLRP model calibrated with IMERG statistics has the potential for estimating I15 for the GRASP biophysical model once the scale difference between IMERG and point rainfall data is addressed.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference30 articles.

1. Henry, B., McKeon, G., Syktus, J., Carter, J., Day, K., and Rayner, D. (2007). Climate Variability, Climate Change and Land Degradation. Clim. Land Degrad., 205–221.

2. Queensland’s Multi-Year Wet and Dry Periods: Implications for Grazing Enterprises and Pasture Resources;McKeon;Rangel. J.,2021

3. Climate Change Impacts on Northern Australian Rangeland Livestock Carrying Capacity: A Review of Issues;McKeon;Rangel. J.,2009

4. McKeon, G.M., Hall, W.B., Henry, B.K., Stone, G.S., and Watson, I.W. (2004). Pasture Degradation and Recovery in Australia’s Rangelands: Learning from History, Queensland Department of Natural Resources, Mines and Energy.

5. Sources of Sediment to the Great Barrier Reef World Heritage Area;McKergow;Mar. Pollut. Bull.,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3