Analytic formulation of Cauchy integrals for boundaries with curvilinear geometry

Author:

Steward David R1,Le Grand Philippe2,Janković Igor3,Strack Otto D.L4

Affiliation:

1. Department of Civil Engineering, Kansas State University2118 Fiedler Hall, Manhattan, KS 66506-5000, USA

2. Minnesota Department of Health625 Robert Street North, PO Box 64975, St. Paul, MN 55164-0975, USA

3. Department of Civil, Structural and Environmental Engineering, University at Buffalo212 Ketter Hall, Buffalo, NY 14260-4400, USA

4. Department of Civil Engineering, University of Minnesota500 Pillsbury Drive, Minneapolis, MN 55455-0116, USA

Abstract

A general framework for analytic evaluation of singular integral equations with a Cauchy kernel is developed for higher order line elements of curvilinear geometry. This extends existing theory which relies on numerical integration of Cauchy integrals since analytic evaluation is currently published only for straight lines, and circular and hyperbolic arcs. Analytic evaluation of Cauchy integrals along straight elements is presented to establish a context coalescing new developments within the existing body of knowledge. Curvilinear boundaries are partitioned into sectionally holomorphic elements that are conformally mapped from a local curvilinear Z -plane to a straight line in the -plane. Cauchy integrals are evaluated in these planes to achieve a simple representation of the complex potential using Chebyshev polynomials and a Taylor series expansion of the conformal mapping. Bell polynomials and the Faà di Bruno formula provide this Taylor series for mappings expressed as inverse mappings and/or compositions. Examples illustrate application of the general framework to boundary-value problems with boundaries of natural coordinates, Bezier curves and B-splines. Strings formed by the union of adjacent curvilinear elements form a large class of geometries along which Dirichlet and/or Neumann conditions may be applied. This provides a framework applicable to a wide range of fields of study including groundwater flow, electricity and magnetism, acoustic radiation, elasticity, fluid flow, air flow and heat flow.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3