Instability in two-phase flows of steam

Author:

Bakhtar F1,Otto S.R2,Zamri M.Y3,Sarkies J.M4

Affiliation:

1. Department of Mechanical and Manufacturing Engineering, The University of BirminghamBirmingham B15 2TT, UK

2. The R&A, St AndrewsFife KY16 9JD, UK

3. University Tenaga Nasional43009 Kajang, Selangor, Malaysia

4. Litron Lasers Ltd8 Consul Road, Rugby CV21 1PB, UK

Abstract

In two-phase flows of steam, when the velocity is between the equilibrium and frozen speeds of sound, the system is fundamentally unstable. Because any disturbance of the system, e.g. imposition of a small supercooling on the fluid, will cause condensation, the resulting heat release will accelerate the flow and increase the supercooling and thus move the system further from thermodynamic equilibrium. But in high-speed flows of a two-phase mixture, dynamic changes affect the thermodynamic equilibrium within the fluid, leading to phase change, and the heat release resulting from condensation disturbs the flow further and can also cause the disturbances to be amplified at other Mach numbers. To investigate the existence of instabilities in such flows, the behaviour of small perturbations of the system has been examined using stability theory. It is found that, although the amplification rate is highest between the equilibrium and frozen speeds of sound, such flows are temporally unstable at all Mach numbers.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Turbulence model and validation of air flow in crossflow turbine nozzle;AIP Conference Proceedings;2018

2. Numerical modeling and high-order scheme for wet steam flow;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2015-04-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3