Affiliation:
1. Department of Mathematics and Statistics, University of Surrey, Guildford GU2 7XH, UK
Abstract
Many well-known partial differential equations can be written as multisymplectic systems. Such systems have a structural conservation law from which scalar conservation laws can be derived. These conservation laws arise as differential consequences of a 1-form ‘quasi-conservation law’, which is related to Noether's theorem. This paper develops the above framework and uses it to introduce a multisymplectic structure for differential-difference equations. The shallow water equations and the Ablowitz–Ladik equations are used to illustrate the general theory. It is found that conservation of potential vorticity is a differential consequence of two conservation laws; this surprising result and its implications are discussed.
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献