Abstract
Abstract
We elaborate on the recently proposed notion of a weak presymplectic gauge PDE. It is a
Z
-graded bundle over the space-time manifold, equipped with a degree 1 vector field and a compatible graded presymplectic structure. This geometrical data naturally defines a Lagrangian gauge field theory. Moreover, it encodes not only the Lagrangian of the theory but also its full-scale Batalin–Vilkovisky (BV) formulation. In particular, the respective field-antifield space arises as a symplectic quotient of the super-jet bundle of the initial fiber bundle. A remarkable property of this approach is that among the variety of presymplectic gauge PDEs encoding a given gauge theory we can pick a minimal one that usually turns out to be finite-dimensional, and unique in a certain sense. The approach can be considered as an extension of the familiar AKSZ construction to not necessarily topological and diffeomorphism-invariant theories. We present a variety of examples including p-forms, chiral Yang–Mills theory, Holst gravity, and conformal gravity. We also explain the explicit relation to the non-BV-BRST version of the formalism, which happens to be closely related to the covariant phase space and the multisymplectic approaches.
Funder
Fonds De La Recherche Scientifique - FNRS
Foundation for the Advancement of Theoretical Physics and Mathematics