Hexagons and triangles in the Rayleigh–Bénard problem: quintic-order equations on a hexagonal lattice

Author:

Fujimura K1,Yamada S2

Affiliation:

1. Department of Applied Mathematics and Physics, Tottori UniversityTottori 680-8552, Japan

2. Nippon Ceramic Co. LtdTottori 689-1193, Japan

Abstract

On a weakly nonlinear basis, we revisit the pattern formation problem in the Boussinesq convection, for which nonlinear terms of the quadratic order are known to vanish from amplitude equations. It is thus necessary to proceed to the quintic-order approximation in order for the amplitude equations to be generic. By deriving the quintic amplitude equations from the governing PDEs, we examined the bifurcation of steady solutions under rigid–free, rigid–rigid and free–free boundary conditions. Right above the criticality, all the axial solutions are obtained including up- and down-hexagons under the asymmetric boundary conditions and hexagons and regular triangles under the symmetric conditions. Hexagons and regular triangles are unstable whereas rolls are stable as has already been predicted by the cubic-order amplitude equations. Irrespective of the boundary conditions, quintic-order terms stabilize hexagons except near the criticality; rolls and hexagons thus coexist stably in an open region. This suggests that amplitude equations of higher order are possible to predict re-entrant hexagons .

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference31 articles.

1. Observation of Coexisting Upflow and Downflow Hexagons in Boussinesq Rayleigh-Bénard Convection

2. Competition in ramped Turing structures

3. Busse F. H. 1962 Das Stabilitätsverhalten der Zellular Konvektion bei endlicher Amplitude. Dissertation University of Munich. [Engl. transl. Rand Rep. LT-66-19 Rand Corp. Santa Monica California.].

4. The stability of finite amplitude cellular convection and its relation to an extremum principle

5. Non-linear properties of thermal convection

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3